Chemistry 2

Lecture 3 Particle on a ring approximation

Learning outcomes from Lecture 2

- quantization of its energy levels Be able to explain why confining a particle to a box leads to
- Be able to explain why the lowest energy of the particle in a box is
- the electronic structure of a conjugated molecule (given equation Be able to apply the particle in a box approximation as a model for

Assumed knowledge for today

nitrogen and oxygen. conjugation in a ring containing carbon and/or heteroatoms such as Be able to predict the number of π electrons and the presence of

The de Broglie Approach

with a particle is related to its momentum: The wavelength of the wave associated

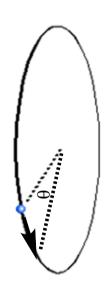
$$p = mv = h / \lambda$$

For a particle with only kinetic energy:

$$E = \frac{1}{2} mv^2 = p^2 / 2m = h^2 / 2m\lambda^2$$

Particle-on-a-ring

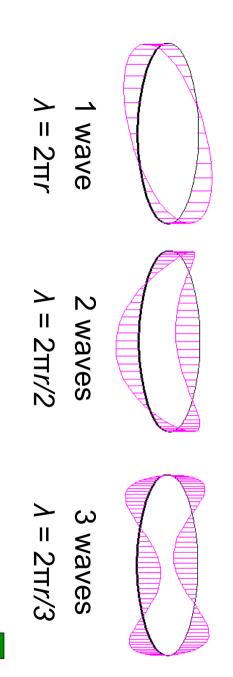
Particle can be anywhere on ring



Ground state is motionless

Particle-on-a-ring

- Ground state is motionless
- number of waves around the ring In higher levels, we must fit an integer



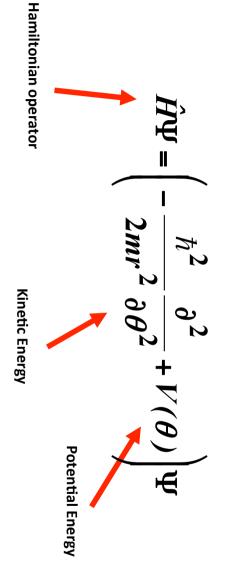
The Schrödinger equation

- Hamiltonian operator. The total energy is extracted by the
- of a quantum particle These are the "observable" energy levels

$$\hat{H}\Psi(x)=\epsilon_i\Psi(x)$$
 Hamiltonian operator Energy eigenfunction Energy eigenvalue

The Schrödinger equation

terms of the angle θ : to Kinetic Energy and Potential Energy. In The Hamiltonian has parts corresponding

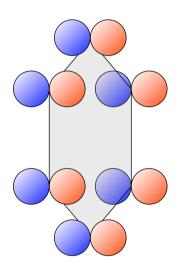


"The particle on a ring"

The ring is a cyclic 1d potential

$$\Psi = \sin(j\theta) \quad \Psi = \cos(j\theta)$$

E must fit an integer number of wavelengths



 π -system of benzene is like a bunch of electrons on a ring

"The particle on a ring"

On the ring, V = 0. Off the ring $V = \infty$.

$$\Psi = sin(j\theta)$$

$$\hat{H}\Psi = -\frac{\hbar^2}{2mr^2} \frac{\partial^2}{\partial \theta^2} \sin(j\theta)$$
$$= \frac{\hbar^2 j^2}{2mr^2} \sin(j\theta) = \varepsilon_j \Psi \qquad j = 1, 2, 3...$$

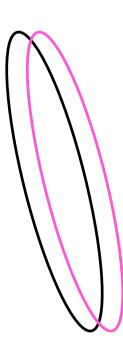
On the ring, V = 0. Off the ring $V = \infty$.

$$\Psi = cos(j\theta)$$

$$\hat{H}\Psi = -\frac{\hbar^2}{2mr^2} \frac{\partial^2}{\partial \theta^2} cos(j\theta)$$
$$= \frac{\hbar^2 j^2}{2mr^2} cos(j\theta) = \varepsilon_j \Psi \qquad j = 0, 1, 2, 3....$$

Particle-on-a-ring

Ground state is motionless



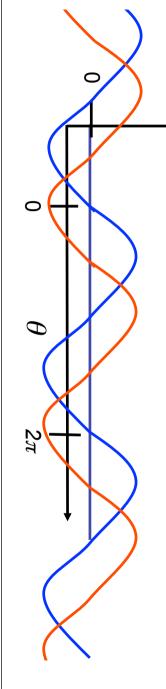
 Ψ = constant

The ring is a cyclic 1d potential

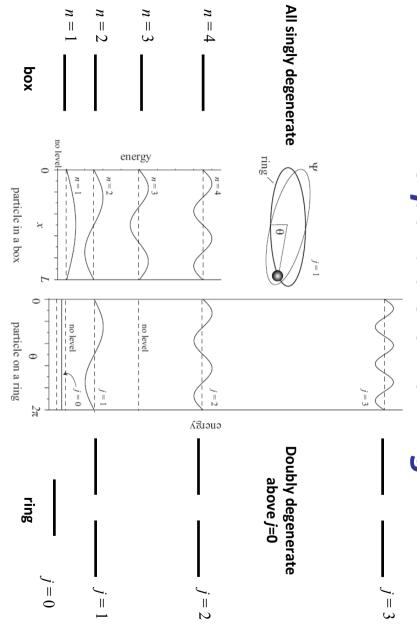
$$\Psi = \sin(j\theta) \quad \Psi = \cos(j\theta)$$

Ш

must fit an integer number of wavelengths

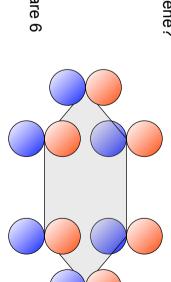


"The particle on a ring"



Application: benzene

Question: how many π -electrons in benzene?

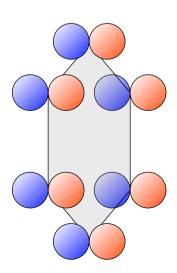


Answer: Looking at the structure, there are 6 carbon atoms which each contribute one electron each. Therefore, there are 6 electrons.

benzene

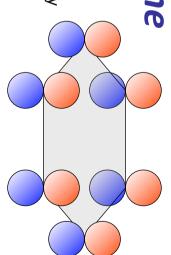
Question: what is the length over which the π -electrons are delocalized, if the average bond length is 1.40 Å?

Answer: There are six bonds, which equates to $6 \times 1.40 \text{ Å} = 8.40 \text{ Å}$



benzene

Question: if the energy levels of the electrons are given by $\varepsilon_n = 2\hbar^2 J^2 \pi^2 / m L^2$, what is the energy of the HOMO in eV?

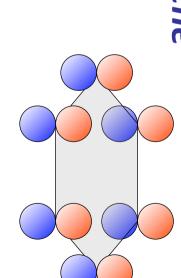


Answer: since there are 6 π -electrons, and therefore the HOMO must have j=1. We know that L = 6 × 1.40 Å = 8.4 0Å. From these numbers, we get ε_j = 3.41×10⁻¹⁹ j² in Joules. The energy of the HOMO is thus ε_1 = 3.41×10⁻¹⁹J = 2.13 eV.

$$j=2$$

$$j=0$$

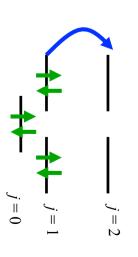
benzene



j=3

Question: what is the energy of the LUMO, and thus the HOMO-LUMO transition?

Answer: $\varepsilon_j = 3.41 \times 10^{-19} j^2$ in Joules. The energy of the LUMO is thus $\varepsilon_2 = 1.365 \times 10^{-18} J = 8.52$ eV. The energy of the HOMO-LUMO transition is thus 6.39 eV.

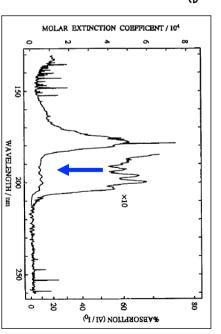


benzene

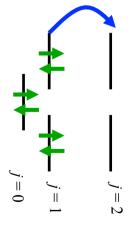
Question: how does the calculated value of the HOMO-LUMO transition compare to experiment?

Answer: The calculated energy of the HOMO-LUMO transition is 6.39 eV. This corresponds to photons of wavelength

 $\lambda = hc/(6.39 \times 1.602 \times 10^{-19}) \sim 194$ nm, which is not so far from the experimental value (around 200 nm).



Hiraya and Shobatake, J. Chem. Phys. 94, 7700 (1991)



Learning Outcomes

- quantization of its energy levels Be able to explain why confining a particle on a ring leads to
- ring is zero Be able to explain why the lowest energy of the particle on a
- molecule (given equation for E_n). model for the electronic structure of a cyclic conjugated Be able to apply the particle on a ring approximation as

Next lecture

beginners Quantitative molecular orbital theory for

Week 10 tutorials

orbitals for diatomic molecules Schrödinger equation and molecular

Practice Questions

The particle on a ring has an infinite number of energy levels (since $j = 0, 1, 2, 3, 4, 5 \dots$) whereas for a ring C_nH_n has only n p-orbitals and so nenergy levels.

 C_6H_6 , for example, only has levels with j=3 (one level), j=1 (two levels), j=2 (two levels) and j=3 (one level)

- (a) Using the analogy between the particle on a ring waves and the π the six π molecular orbitals for C_6H_6 orbitals on slide 17, draw the four π molecular orbitals for C_4H_4 and
- **(b**) as bonding, non-bonding or antibonding neighbours) construct energy level diagrams and label the orbitals the number of in-phase or out-of-phase interactions between Using qualitative arguments (based on the number of nodes and/or
- <u>O</u> antiaromatic? Based on your answer to (b), why is C₆H₆ aromatic and C₄H₄